Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Microvasc Res ; 149: 104557, 2023 09.
Article in English | MEDLINE | ID: covidwho-20230851

ABSTRACT

BACKGROUND: Endothelial dysfunction, assessed by flow-mediated dilation (FMD), is related to poor prognosis in patients with COVID-19 pneumonia (CP). In this study, we explored the interplay among FMD, NADPH oxidase type 2 (NOX-2) and lipopolysaccharides (LPS) in hospitalised patients with CP, community acquired pneumonia (CAP) and controls (CT). METHODS: We enrolled 20 consecutive patients with CP, 20 hospitalised patients with CAP and 20 CT matched for sex, age, and main cardiovascular risk factors. In all subjects we performed FMD and collected blood samples to analyse markers of oxidative stress (soluble Nox2-derived peptide (sNOX2-dp), hydrogen peroxide breakdown activity (HBA), nitric oxide (NO), hydrogen peroxide (H2O2)), inflammation (TNF-α and IL-6), LPS and zonulin levels. RESULTS: Compared with controls, CP had significant higher values of LPS, sNOX-2-dp, H2O2,TNF-α, IL-6 and zonulin; conversely FMD, HBA and NO bioavailability were significantly lower in CP. Compared to CAP patients, CP had significantly higher levels of sNOX2-dp, H2O2, TNF-α, IL-6, LPS, zonulin and lower HBA. Simple linear regression analysis showed that FMD inversely correlated with sNOX2-dp, H2O2, TNF-α, IL-6, LPS and zonulin; conversely FMD was directly correlated with NO bioavailability and HBA. Multiple linear regression analysis highlighted LPS as the only predictor of FMD. CONCLUSION: This study shows that patients with COVID-19 have low-grade endotoxemia that could activate NOX-2, generating increased oxidative stress and endothelial dysfunction.


Subject(s)
COVID-19 , Endotoxemia , Pneumonia , Vascular Diseases , Humans , Endotoxemia/diagnosis , Lipopolysaccharides , Hydrogen Peroxide , Interleukin-6 , Tumor Necrosis Factor-alpha , COVID-19/diagnosis , Oxidative Stress
2.
Circ Res ; 132(3): 290-305, 2023 02 03.
Article in English | MEDLINE | ID: covidwho-2194410

ABSTRACT

BACKGROUND: SARS-CoV-2 is associated with an increased risk of venous and arterial thrombosis, but the underlying mechanism is still unclear. METHODS: We performed a cross-sectional analysis of platelet function in 25 SARS-CoV-2 and 10 healthy subjects by measuring Nox2 (NADPH oxidase 2)-derived oxidative stress and thromboxane B2, and investigated if administration of monoclonal antibodies against the S protein (Spike protein) of SARS-CoV-2 affects platelet activation. Furthermore, we investigated in vitro if the S protein of SARS-CoV-2 or plasma from SARS-CoV-2 enhanced platelet activation. RESULTS: Ex vivo studies showed enhanced platelet Nox2-derived oxidative stress and thromboxane B2 biosynthesis and under laminar flow platelet-dependent thrombus growth in SARS-CoV-2 compared with controls; both effects were lowered by Nox2 and TLR4 (Toll-like receptor 4) inhibitors. Two hours after administration of monoclonal antibodies, a significant inhibition of platelet activation was observed in patients with SARS-CoV-2 compared with untreated ones. In vitro study showed that S protein per se did not elicit platelet activation but amplified the platelet response to subthreshold concentrations of agonists and functionally interacted with platelet TLR4. A docking simulation analysis suggested that TLR4 binds to S protein via three receptor-binding domains; furthermore, immunoprecipitation and immunofluorescence showed S protein-TLR4 colocalization in platelets from SARS-CoV-2. Plasma from patients with SARS-CoV-2 enhanced platelet activation and Nox2-related oxidative stress, an effect blunted by TNF (tumor necrosis factor) α inhibitor; this effect was recapitulated by an in vitro study documenting that TNFα alone promoted platelet activation and amplified the platelet response to S protein via p47phox (phagocyte oxidase) upregulation. CONCLUSIONS: The study identifies 2 TLR4-dependent and independent pathways promoting platelet-dependent thrombus growth and suggests inhibition of TLR4. or p47phox as a tool to counteract thrombosis in SARS-CoV-2.


Subject(s)
COVID-19 , Thrombosis , Humans , Antibodies, Monoclonal/pharmacology , Blood Platelets/metabolism , COVID-19/metabolism , Cross-Sectional Studies , SARS-CoV-2 , Thrombosis/etiology , Thrombosis/metabolism , Thromboxanes/metabolism , Thromboxanes/pharmacology , Toll-Like Receptor 4/metabolism
3.
Clin Transl Gastroenterol ; 13(1): e00448, 2022 01 13.
Article in English | MEDLINE | ID: covidwho-1726955
4.
Kardiol Pol ; 79(11): 1197-1205, 2021.
Article in English | MEDLINE | ID: covidwho-1543158

ABSTRACT

COVID-19 is a viral respiratory illness caused by the SARS-CoV-2 infection. In addition to lung disease, clinical complications of COVID-19 include myocardial damage and ischemia-related vascular disease. Severe manifestations and poor prognosis in these patients are associated with a hypercoagulable state predisposing to thrombotic-related complications and eventually death. However, these clinical features can also occur in other forms of pneumonia, such as community-acquired pneumonia (CAP), which, is also complicated by vascular diseases and characterized by platelet activation. Platelets play a pivotal role in these settings as bacteria and viruses may induce activation via Toll-like receptors (TLRs) in CAP patients and different and multiple pathways, including ACE2-AngII axis and/or TLRs, in COVID-19 patients. Despite evidence confirming the implication of platelet activation in both settings, their contribution to the thrombotic process is still under investigation. Thus, in this review, we (1) compare the thrombotic features of SARS-CoV-2 infection and CAP, (2) analyze the putative mechanisms accounting for venous and arterial thrombosis in SARS-CoV-2 infection, and (3) discuss the potential anticoagulant armamentarium to counteract thrombosis.


Subject(s)
COVID-19 , Thrombosis , Anticoagulants , Blood Platelets , Humans , SARS-CoV-2 , Thrombosis/drug therapy , Thrombosis/etiology
5.
Eur Heart J Suppl ; 23(Suppl E): E184-E188, 2021 Oct.
Article in English | MEDLINE | ID: covidwho-1470144

ABSTRACT

Acute infections may be complicated by thrombosis occurring in the venous and arterial circulation. This may be observed in patients with community-acquired pneumonia (CAP) and also in patients with coronavirus 2019 (COVID-19), that is a pandemic characterized by severe acute respiratory syndrome (SARS-CoV-2) needing mechanical ventilation and intensive care unit treatment. However, the type and rate of thrombosis can vary according to the cause of pneumonia as is more frequently complicated by arterial thrombosis in CAP, while an equal incidence of venous and arterial thrombosis occurs in SARS-CoV-2. The mechanisms of disease are overall platelet-related in CAP while activation of both platelets and clotting system is implicated in the pathogenesis of thrombosis in SARS-CoV-2; this finding could imply a different therapeutic approach of the two settings. Thrombosis may also occur in subjects vaccinated against SARS-CoV-2 even if its incidence is not so high (1/100 000); this rare effect occurs more prevalently in young women, is independent from known risk factors of thrombosis, is caused by antibodies against platelet PF4 and is counteracted by treatment with immunoglobulin and glucocorticoids.

6.
Platelets ; 32(8): 1009-1017, 2021 Nov 17.
Article in English | MEDLINE | ID: covidwho-1258665

ABSTRACT

Platelets may be a target of bacteria and viruses, which can directly or indirectly activate them so promoting thrombosis. In accordance with this, community-acquired pneumonia (CAP) is complicated by ischemia-related vascular disease (myocardial infarction and stroke) in roughly 10% of patients while the incidence of venous thrombosis is uncertain. In CAP platelet biosynthesis of TxA2 is augmented and associated with myocardial infarction; however, a cause-effect relationship is still unclear as unclear is if platelet activation promotes thrombosis or functional changes of coronary tree such vasospasm. Retrospective studies suggested a potential role of aspirin in reducing mortality but the impact on vascular disease is still unknown. Coronavirus disease 2019 (Covid-19) is complicated by thrombosis in roughly 20% of patients with an almost equivalent localization in arterial and venous circulation. Platelet activation seems to have a pivot role in the thrombotic process in Covid-19 as consistently evidenced by its involvement in promoting Tissue Factor up-regulation via leucocyte interaction. Until now, antiplatelet treatment has been scarcely considered for the treatment of Covid-19; interventional trials, however, are in progress to explore this issue. The aim of this review is 1) to compare the type of vascular diseases complicating CAP and Covid-19 2) to assess the different role of platelets in both diseases and 3) to discuss if antiplatelet treatment is potentially useful to improve clinical outcomes.


Subject(s)
Aspirin/therapeutic use , Blood Platelets/metabolism , COVID-19 Drug Treatment , COVID-19 , Myocardial Infarction , SARS-CoV-2/metabolism , Stroke , Thrombosis , COVID-19/metabolism , COVID-19/mortality , Humans , Myocardial Infarction/drug therapy , Myocardial Infarction/metabolism , Myocardial Infarction/mortality , Stroke/drug therapy , Stroke/metabolism , Stroke/mortality , Thrombosis/drug therapy , Thrombosis/metabolism , Thrombosis/mortality
7.
Clin Transl Gastroenterol ; 12(6): e00348, 2021 06 04.
Article in English | MEDLINE | ID: covidwho-1259760

ABSTRACT

INTRODUCTION: Patients with community-acquired pneumonia display enhanced levels of lipopolysaccharides (LPS) compared with controls, suggesting that low-grade endotoxemia may be implicated in vascular disturbances. It is unknown whether this occurs in patients with coronavirus 2019 (COVID-19) and its impact on thrombotic complications. METHODS: We measured serum levels of zonulin, a marker of gut permeability, LPS, and D-dimer in 81 patients with COVID-19 and 81 healthy subjects; the occurrence of thrombotic events in COVID-19 during the intrahospital stay was registered. RESULTS: Serum LPS and zonulin were higher in patients with COVID-19 than in control subjects and, in COVID-19, significantly correlated (R = 0.513; P < 0.001). Among the 81 patients with COVID-19, 11 (14%) experienced thrombotic events in the arterial (n = 5) and venous circulation (n = 6) during a median follow-up of 18 days (interquartile range 11-27 days). A logistic regression analysis showed that LPS (P = 0.024) and D-dimer (P = 0.041) independently predicted thrombotic events. DISCUSSION: The study reports that low-grade endotoxemia is detectable in patients with COVID-19 and is associated with thrombotic events. The coexistence of low-grade endotoxemia with enhanced levels of zonulin may suggest enhanced gut permeability as an underlying mechanism.


Subject(s)
COVID-19 , Endotoxemia , Haptoglobins/metabolism , Intestinal Mucosa , Protein Precursors/metabolism , SARS-CoV-2 , Thrombosis , Biomarkers/blood , COVID-19/blood , COVID-19/complications , COVID-19/physiopathology , Correlation of Data , Endotoxemia/diagnosis , Endotoxemia/metabolism , Endotoxemia/virology , Female , Fibrin Fibrinogen Degradation Products/analysis , Humans , Intestinal Mucosa/metabolism , Intestinal Mucosa/virology , Lipopolysaccharides/analysis , Male , Middle Aged , Permeability , Pneumonia, Viral/diagnosis , Pneumonia, Viral/etiology , SARS-CoV-2/pathogenicity , SARS-CoV-2/physiology , Thrombosis/blood , Thrombosis/diagnosis , Thrombosis/etiology
8.
Redox Biol ; 36: 101655, 2020 09.
Article in English | MEDLINE | ID: covidwho-671830

ABSTRACT

Nox2 is responsible for artery dysfunction via production of reactive oxidant species. RNA viruses may activate Nox2, but it is unknown if this occurs in coronavirus 2019(Covid-19). Nox2 activation by soluble Nox2-derived peptide(sNox2-dp) was measured in patients hospitalized for Covid-19 (n = 182) and controls (n = 91). sNox2-dp values were higher in Covid-19 patients versus controls and in severe versus non severe Covid-19. Patients with thrombotic events(n = 35,19%) had higher sNox2-dp than thrombotic event-free ones. A logistic regression analysis showed that sNox2 and coronary heart disease predicted thrombotic events. Oxidative stress by Nox2 activation is associated severe disease and thrombotic events in Covid-19 patients.


Subject(s)
Coronavirus Infections/metabolism , NADPH Oxidase 2/metabolism , Pneumonia, Viral/metabolism , Thrombosis/blood , Aged , Biomarkers/blood , COVID-19 , Coronavirus Infections/blood , Coronavirus Infections/complications , Coronavirus Infections/pathology , Female , Humans , Male , Middle Aged , NADPH Oxidase 2/chemistry , Oxidative Stress , Pandemics , Peptide Fragments/blood , Pneumonia, Viral/blood , Pneumonia, Viral/complications , Pneumonia, Viral/pathology , Thrombosis/etiology
SELECTION OF CITATIONS
SEARCH DETAIL